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Lecture outline

Longitudinal and transverse wakes—definitions and properties.

Panofsky-Wenzel theorem.

Wakes in axisymmetric geometry.

Wakes in system with planes of symmetry.

Resonator wake.

We discussed in the previous lecture that the electromagnetic interaction
between particles of a relativistic beam moving in free space is suppressed
(∝ 1/γ2). In practice, such interaction is often determined by the presence of
material walls of the vacuum chamber and occurs if 1) the pipe is not cylindrical
(which is usually due to the presence of RF cavities, flanges, bellows, beam
position monitors, slots, etc., in the vacuum chamber), or 2) the wall of the
chamber is not perfectly conducting.
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Effect on environment on the beam

In a vacuum chamber the electromagnetic field that the beam feels is
different from the vacuum field. See illustrations.

The fields can drive beam instabilities in a ring or deteriorate beam properties
(e.g., the projected emittance or the energy spread) in linacs. We want to
characterize the forces exerted by these fields on charges in a general setup.
After we know the forces, we will be able to study the beam dynamics with
account of these forces.
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Assumptions

In the classical wake field theory we make several simplifying
assumptions/approximations.

We use the linearity of Maxwell’s equations and boundary conditions —
the force is proportional to the beam charge.

When we calculate the forces, we assume that the beam is moving along a
straight line through the region that generates a wake (that is we neglect
the orbit curvature in this region). The electromagnetic interaction of
charged particles in accelerators with surrounding environment is usually a
relatively small effect that can be considered as a perturbation.

We characterize the effect of the wake field forces by their integrated along
the orbit values.

For relativistic beams we assume v = c . This introduces the causality
principle for the wakes.

These assumptions are typically well satisfied in reality (when one deals with
relativistic beams), although there are special cases when each of them can be
violated.
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Definition of wake, case 1

1. A localized source of the wake (a cavity, a flange, a bellow, . . . ).
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A source particle qs passing through a
localized obstacle in the beam pipe
creates fields E (r , t), B(r , t) that act
on the test particle qt ,

r s(t) = xs x̂ + ys ŷ + ct ẑ
r t(t) = xt x̂ + yt ŷ + (ct − s)ẑ

For s > 0, the test particle is behind the
source particle.

Calculate the change of the momentum ∆pt of the test particle caused by the
fields generated by the source particle,

∆pt = qt

∫∞
−∞ dt [E (r t(t), t) + c ẑ × B(r t(t), t)]

We assume that the integrals converge at infinity. The wake:

w(xs , ys , xt , yt , s) =
c

qsqt
∆pt
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Longitudinal and transverse wakes

We usually separate the longitudinal and transverse components of w
introducing the longitudinal and transverse wake functions

w` =−
c

qsqt
∆pt,z = −

c

qs

∫
dt Ez(r t(t), t), (3.1)

w t =
c

qsqt
∆p⊥ =

c

qs

∫
dt [E⊥(r t(t), t) + c ẑ × B(r t(t), t)]

Note the minus sign in the definition of w` — a positive wake means an energy
loss of the test particle (assuming qsqt > 0). The longitudinal wake has the
dimension of energy/charge2 (e.g., V/C=Ω/s). In CGS units, the wake
dimension is cm−1 (1 V/pC = 1.11 cm−1).

Wake field and impedance calculations are often done in CGS units. To convert
from cgs to MKS simply set:

Z0c

4π
= 1
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Definition of wake, case 2

2. The source of the wake is uniformly (or periodically) distributed along
the path (the case of a resistive wall, periodic accelerating structure,
etc.).
In a steady state (far from the entrance to the structure) the fields do
not depend on z . It is more convenient to introduce the wake per unit
length of the path

w`(xs , ys , xt , yt , s) = −
1

qs
Ez(r t(t), t), (3.2)

w t(xs , ys , xt , yt , s) =
1

qs
[E⊥(r t(t), t) + c ẑ × B(r t(t), t)]

In a longitudinally uniform system the RHS here does not depend on
time. [In a periodic structure one averages the fields over the structure
period, 〈. . .〉.]
In this definition, the wakes acquire an additional dimension of inverse
length, and have the dimension V/C/m in MKS (and cm−2 in CGS).
In case of periodic structure we average RHS over the period.
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Particles moving in a perfectly conducting pipe

If particles move in a perfectly conducting cylindrical pipe of arbitrary cross
section parallel to the axes, they induce image charges on the surface of the
wall. The image charges travel with the same velocity v . Since the particles and
image charges move on parallel paths, in the limit v = c , they do not interact
with each other. Hence, w = 0.

Mathematically, the boundary condi-
tion for the fields on the surface of a
perfectly conducting metal is

E t = 0 (3.3)

See the discussion of the Leontovich
boundary condition in L5.

The interaction between the particles in ultrarelativistic limit can occur if 1) the
wall is not perfectly conducting, or 2) the pipe is not cylindrical (due to the
presence of RF cavities, flanges, bellows, beam position monitors, slots, etc., in
the vacuum chamber), or 3) we drop the assumption v = c (the space charge
impedance).
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General properties of wake functions

Since we assume that v = c the wake does not propagate ahead of the
leading charge, hence

w`(xs , ys , xt , yt , s) = 0, w t(xs , ys , xt , yt , s) = 0, for s < 0 .

s

wl

s

wt

[Exceptions: the space charge wake, the CSR wake.]
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Panofsky-Wenzel theorem

The longitudinal and transverse wakes are not independent of each other,
they are linked through the Panofsky-Wenzel theorem. It states that

∇(t) ×w = 0

where ∇(t) = (x̂∂/∂xt , ŷ∂/∂yt , ^̀∂/∂s). It follows from this equation that

∂w t

∂s
= ∇(t)

⊥ w` ≡ x̂
∂w`
∂xt

+ ŷ
∂w`
∂yt

(3.4)

From ∇(t) ×w = 0 it also follows that both wakes can be expressed in
terms of a single function V (xs , ys , xt , yt , s)

w` =
∂V

∂s
, w t = x̂

∂V

∂xt
+ ŷ

∂V

∂yt
(3.5)

10



Panofsky-Wenzel theorem

Let’s check that P-W holds,(
x̂
∂

∂xt
+ ŷ

∂

∂yt

)
w` =

(
x̂
∂

∂xt
+ ŷ

∂

∂yt

)
∂V

∂s

=
∂

∂s

(
x̂
∂

∂xt
+ ŷ

∂

∂yt

)
V =

∂

∂s
w t (3.6)

Sometimes V is called the wake potential.
One can also prove the following property of the wake function

∇(t) ·w t = 0

From this equation it follows that V satisfies the Laplace equation

∂2V

∂x2
t

+
∂2V

∂y2
t

= 0 (3.7)
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Two comments

1. E and B are not necessarily the fields of the first particle—they can
also be an external electromagnetic field (but no charges and currents
along the orbit of the test charge). In this case the Panofsy-Wenzel
theorem is applicable as well.

Example: a transverse deflecting structure (TDS). 5. TM100 mode is
excited in the cavity.

Ex

Fy

5
C. Behrens et al., PRST-AB 15, 022802 (2012).
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Wakes in axisymmetric systems, multipoles

ρ�

ρ�

θ

�
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In an axisymmetric system V
depends only on the absolute values
of ρs =

√
x2
s + y2

s , ρt =
√

x2
t + y2

t ,
and the angle θ between them.
Chose coordinate system so that
ys = 0. V (ρs , ρt , θ, s) will be a
periodic even function of angle θ in
the cylindrical coordinate system
shown in the figure.

V (ρs , ρt , θ, s) =
∞∑

m=0

Vm(ρs , ρt , s) cos(mθ)

This is an expansion in the series of multipoles: m = 0 is the monopole
wake, m = 1 is the dipole, m = 2 is the quadrupole, etc. [Vm are the
main objects in A. Chao’s textbook.]
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Wakes in axisymmetric systems, expansion in powers of ρ

It is possible to find a general form of the dependence of Wm versus ρs
and ρt using Maxwell’s equations6:

Vm(ρs , ρt , s) = Fm(s)ρ
m
s ρ

m
t

We then have
w` =

∑
w

(m)
` , w t =

∑
w (m)

t

were

w
(m)
` = cos(mθ)

∂Vm

∂s
= ρms ρ

m
t F
′
m(s) cos(mθ),

w (m)
t = ∇(t)

⊥ Vm cos(mθ) = mρms ρ
m−1
t Fm(s)

[
ρ̂ cos(mθ) − θ̂ sin(mθ)

]
where ρ̂ and θ̂ are the unit vectors in the radial and azimuthal directions.

6
The dependence Vm ∝ ρmt follows from Eq. (3.7); however it is not easy to prove that Vm ∝ ρms .
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Wakes in axisymmetric systems, small offsets

For small offsets, near the axis, m ≥ 2 terms can usually be neglected.
One then keeps m = 0 (monopole) and m = 1 (dipole) wakes. For the
monopole wake

w` ≡ w
(0)
` = F ′0(s) = V ′0(s)

The monopole transverse wake vanishes, w
(0)
t = 0.

ρ�

ρ� θ

ρ

θ

ρ ���(θ )-θ ���(θ )

�

For the dipole wake (m = 1), the vector
ρ̂ cos θ− θ̂ sin θ is directed along the x
axis, that is in the direction of
ρs = xs x̂ + ys ŷ . Hence,

w (1)
t = ρsF1(s).

The dipole wake does not depend on the offset of the trailing particle!
This is only true in axisymmetric systems.
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Wakes in axisymmetric systems

For small offsets, the transverse wake is typically normalized by ρs , and

w
(1)
t /ρs is called the transverse dipole wake, w̄t , (we will use the over-bar

notation for this wake),

w̄t(s) = F1(s) (3.8)

w̄t has dimension of V/C/m or cm−2. This w̄t is what is usually called
the transverse wake in accelerator literature; it should not be confused
with w t in (3.1)!
A positive transverse wake means the kick in the direction of the offset of
the driving particle (if both particles have the same charge).
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General properties of wakes

There is a number of general properties of the wake functions, see A.
Chao’s book. Classical wakes are localized behind the driving particle.
Also, |w`(s)| ≤ w`(0).

An important property of the wake is:∫∞
0

w`(s)ds = 0 (3.9)

We will return to this property later. If this is not satisfied for your model
of wake, it means that the model is not valid for 0 < s <∞, but only on
some finite interval of coordinate s.
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Transverse wakes in non-axisymmetric systems

Assume a vacuum chamber with two perpendicular planes of symmetry:
x = 0 and y = 0 (say, rectangular).

Figure from Ref.7: w is the width of the structure and d(s) is the height.

7
V. Smaluk et al. PRST-AB 17, 074402 (2014).
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Transverse wakes in non-axisymmetric systems
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Due to the symmetry, the transverse
wake is zero for zero offsets. For
small offsets, in linear
approximation, the transverse wake
in this geometry has 4 components.

The transverse wake along y is proportional to ys and yt

wy = w̄d
y (s)ys + w̄q

y (s)yt

with ys the offset (in y) of the leading (source) particle and yt the offset of the
trailing (test) one. Here w̄d

y is the dipole wake in y direction and w̄q
y is the

quadrupole wake in y direction8. The bar indicates that this is the wake per
unit offset. Note that, because of the symmetry, there are no terms proportional
to xs and xt in wy .

8
This quadrupole should not be confused with the wake m = 2 in axisymmetric geometry.
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Transverse wakes in non-axisymmetric systems

Similarly, the wake along x is

wx(s, xs, xt) = w̄d
x (s)xs + w̄q

x (s)xt

Here w̄d
x is the dipole wake in x direction and w̄q

x is the quadrupole wake
in x direction. As above, because of the symmetry, there are no terms
proportional to ys and yt in wx .

One can show that w̄q
y (s) = −w̄q

x (s)9. In the limit w =∞ (parallel
plates in x direction) it also follows that w̄d

x (s) = −w̄q
x (s).

If both particles have the same offset (the offset for the whole beam),
xs = xt = x , ys = yt = y , then

wy (s, y) = [w̄d
y (s) + w̄q

y (s)]y

wx(s, x) = [w̄d
x (s) + w̄q

x (s)]x (3.10)

The wake in this case is the sum of the dipole and the quadrupole wakes.
9

This follows from ∇(t) · w t = 0.

20



Wake field in RF cavities

Superconducting RF cavities.
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Resonator wake

An RF cavity has many modes that are
trapped inside and each oscillates with
its own frequency ωn, n = 1, 2, . . ..
Each mode can be considered as a
damped linear oscillator, so the wake is
characterized by 3 parameters: the
frequency ωR , the damping constant α
and the loss factor κ (dimension V/C)

w`(s) = 2κe−αs/c
(

cos
ω̄s

c
−
α

ω̄
sin

ω̄s

c

)
(3.11)

The wake at the origin: w`(0) = 2κ.

The frequency ω̄ is related to the resonator frequency ωR , ω̄ =
√
ω2

R − α2.
Instead of α one can use the quality factor Q = ωR/2α.
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Resonator wake
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sωR/c

w
l/
2κ

�=��

In the limit of large quality factor Q � 1 we have ω̄ ≈ ωR ,

w` ≈ 2κe−ωR s/2Qc cos
ωRs

c
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Resonator wake

A quantity R/Q is often used instead of κ
R

Q
=

2κ
ωR

Here R is the shunt impedance.
In practice one has to sum over all cavity modes (Qn � 1):

w`(s) = 2
∑
n

κne
−ωns/2Qnc cos

ωns

c
(3.12)

PEP-II copper RF cavities10

Frequency ωR/2π (GHz) Q R/Q, (Ω)

0.480 (fundamental) 14218 116.358

1.003 128 0.360

1.288 222 7.000

1.584 300 3.870

10
Rimmer et al. SLAC-PUB-7211 (1996).
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Transverse resonator wake

For an axisymmetric RF cavity, the transverse resonator wake (3.8) is

w̄t(s) = 2
∑
n

κt,ne
−ωns/2Qnc sin

ω̄ns

c
(3.13)

where κt,n are the kick factors (dimension V/(C m)) and the frequency
ω̄n is related to the resonator frequency ωn, ω̄n = ωn

√
1 − (2Qn)−2.

� �� �� �� �� ��
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sωR/c

w
t/
2κ
t

�=��

Note that wt(0) = 0.

Problem: find the wake potential for the longitudinal and transverse resonant wakes.
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Causality and the “catch-up” distance

s

a
z

ll-s

In the limit when the leading
charge has v = c , its
electromagnetic field cannot
overtake the charge and is
localized behind it. The field
can only interact with the
trailing charges in the beam.
This is called the causality
principle.

Assume that a leading (driving) particle enters a cavity from a pipe of radius a
at coordinate z = 0 at time t = 0. The trailing (test) particle is distance s
behind the leading one. The scattered field reaches the trailing charge at time t
when the leading charge is at `, then ct =

√
(`− s)2 + a2. Assuming that

s � a we find

` =
√
(`− s)2 + a2 ≈ `

(
1 −

2s

`
+

a2

`2

)
` ≈ a2

2s
− catch-up distance.
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Numerical estimate of the catch-up distance

Typically s ∼ σz is of order of the bunch length. Take
a=5 cm
σz = 1 mm

` ≈ a2

2σz
≈ 1.25 m
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